
Math1010C Term1 2016
Tutorial 2, Sept 19

This time we evaluated limn→∞
1

n√n! by comparing it to limn→∞
Rn

n
for dif-

ferent positive R and using the ε−N language. We also obtained the explicit
formula of Fibonacci numbers by establishing some geometric sequences. For
the evaluation of limn→∞

1
n√n! , you can think that the n-th term of the se-

quence is taking geometric mean of 1
1
, 1
2
, 1
3
, ..., 1

n
, so the sequence converges to

0 as the sequence ( 1
n
) does. In Chapter XII of Lang’s Short Calculus, Lang

established two inequalities relating n!, nn and the Euler’s number e by con-

sidering the integral

∫ n

1

log(x)dx, which implies limn→∞
n

n√n! = e. This of

course implies limn→∞
1

n√n! = 0

Ex1. For R > 0, show that lim
n

Rn

n!
= 0

Soln:
Rn

n!
= R

1
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...R

n
= R

1
R
2
...R
N

R
N+1

...R
n

for n ≥ N + 1 where N is any nat-

ural number. We take N to be a natural number larger than R. Then,
Rn

n!
= R

1
R
2
...R

n
= R

1
R
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...R
N

R
N+1

...R
n
≤ R

1
R
2
...R
N
· 1 · ... · 1 · R

n
= R

1
R
2
...R
N
R
n

for

n ≥ N + 1. Since N is a fixed natural number, RHS is a constant times R
n

,
which converges to 0. So by Sandwich theorem, we are done.

Ex2. lim
n

1
n
√
n!

= 0

Soln: For R > 0, we have limn
Rn

n!
= 0. Take ε = 1, there is a natural number

N1 ∈ N depending on R such that 0 < Rn

n!
< 1 for all n ≥ N1. Taking n-th

root on both sides, 0 < R
n√n! < 1 for all n ≥ N1. Thus, for any R > 0, there

is a natural number N1 ∈ N such that 0 < 1
n√n! <

1
R

for all n ≥ N1. Let any

ε > 0, take R = 1
ε
, then we are done.
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You can use the above method to conclude that limn
n
√
n = 1 by compar-

ing to limn r
nn = 0 for any 0 < r < 1. For limn r

nn = 0, we give a proof
here.
Proof: Let 0 < r < 1, r = 1

1+c
for some c > 0 ( Suffices to find c > 0 such

that the equality holds). rn = 1
(1+c)n

and (1+c)n = 1+nr+n(n−1)
2

+... ≥ n(n−1)
2

for n ≥ 2. Thus, rnn ≤ 2
n(n−1)n = 2

n−1 for n ≥ 2. LHS converges to 0. The
result follows from Sandwich theorem.

Fibonacci sequence is (1,1,2,3,5,8,13,21,34,55,...). Denote the n-th term
by Fn, we have F1 = 1, F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3. Instead of
considering the Fibonacci sequence, we consider the generalized one, called
(Gn), where G1 = 1, G2 = x and Gn = Gn−1 + Gn−2 for n ≥ 3, x is
any real number. Gn can be written in terms of Fibonacci sequence, namely,
Gn = xFn−1+Fn−2 for n ≥ 3. On the other hand, Gn is a geometric sequence
if x satisfies 1 + x = x2 as can be checked. Thus, Gn = xn−1 = xFn−1 +Fn−2
whenever 1 + x = x2 and n ≥ 3. Notice that 1 + x = x2 has two distinct
roots. We denote them by φ1, φ2. It remains to solve the system of linear
equations φn−1i = φiFn−1 + Fn−2 (i = 1, 2) for Fn−1, where φi are constants
and Fn−1, Fn−2 are variables in the equations.
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